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Abstract

The buoyancy-driven magnetohydrodynamic flow in a liquid-metal filled cubic enclosure was investigated by three-

dimensional numerical simulation. The enclosure was differentially heated at two opposite vertical walls, all other walls

being adiabatic, and a uniform magnetic field was applied orthogonal to the temperature gradient and to the gravity

vector. The Rayleigh number was 105 and the Prandtl number was 0.0321 (characteristic of Pb–17Li at 573 K). The

Hartmann number was made to vary between 102 and 103 and the electrical conductance of the walls between 0 and1.
The continuity, momentum and enthalpy transport equations, in conjunction with a Poisson equation for the electric

potential, were solved by a finite volume method using the general-purpose CFX-4 package with some necessary ad-

aptations. Steady-state conditions were assumed. With respect to the case of parallel flow in an infinitely tall enclosure,

studied in previous work, the suppression of convective motions due to magnetohydrodynamic interactions was

stronger in the core, and a complex three-dimensional flow (with secondary motions) and current pattern was estab-

lished in the fluid domain. Increasing the Hartmann number suppressed convective motions and exalted the square-

shape of the circulation cells. Increasing the wall conductance ratio from perfectly insulating to perfectly conducting

walls also resulted in an increasing suppression of convection. The related case of an internally heated enclosure is

discussed in a companion paper. � 2002 Published by Elsevier Science Ltd.

1. Introduction

Different schemes have been proposed in the last

years for the breeding blankets of fusion reactors; some

of them are based on solid breeders such as lithium

hydrides or silicates, while others rely on liquid lithium

alloys, among which the 17%Li–83%Pb eutectic (Pb–

17Li) is the most likely candidate. In their turn, liquid

metal breeder designs can be classified into two families:

in one of them the coolant coincides with the liquid

breeder itself (self-cooled concept), while in the other

heat is removed by water flowing in tubes (water-cooled

concept).

Comparisons of the two concepts have been pre-

sented for some considerable time in the context of

European projects [1]. In the self-cooled concept high

velocities are required to remove heat; thus, the flow

must be strongly forced, which results in large pressure

losses induced by MHD effects, while buoyancy effects

are comparatively negligible. This is not the case for

separately-cooled designs, where a weak forced flow is

required only for tritium extraction, and relevant tem-

perature gradients occur; therefore, the flow is mainly

buoyancy-driven.

Within the separated-cooled concept, the problem

arises of understanding and characterizing buoyant

flows in a low-Prandtl number fluid under the influence

of a strong magnetic field.

In a previous paper [2], a general computational

approach to MHD problems using an advanced CFD

package with a minimum of modifications was de-

scribed. The method was validated against asymptotic

results for the case of fully developed buoyant flow. The

use of a general-purpose package in MHD modelling
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opens the possibility of performing numerical simula-

tions for complex geometries of direct engineering in-

terest.

In the present work, the method is applied to the case

of a fully three-dimensional buoyancy-induced flow

under the influence of a strong magnetic field. The

configuration studied (cubic enclosure of side length D

with gravity vector, magnetic field, and temperature

gradient orthogonal to one another and to the walls)

is sketched in Fig. 1(a). The temperature gradient is

supposed to be directed along x and the magnetic field

along y.

Here, in contrast with the previous fully developed

flow problem, convective terms are important and a

fully three-dimensional flow occurs; no exact solution

exists so that the computational results can only be

Nomenclature

BðBÞ magnetic induction vector (module) (T)

cw wall conductance ratio, ðrwtwÞ=ðrDÞ
(dimensionless)

D side length of the enclosure (m)

gðgÞ gravity acceleration vector (module)

ðm s�2Þ
jðjÞ current density vector (module) normalized

by j0 ¼ ru0B (dimensionless)
M Hartmann number, DBðr=lÞ1=2

(dimensionless)

Nu Nusselt number, ðq00DÞ=ðkD#Þ
(dimensionless)

p pressure normalized by Dj0B
(dimensionless)

Pr Prandtl number, m=a (dimensionless)
q00 heat flux ðW m�2Þ
Ra Rayleigh number, gbD#D3=ðmaÞ

(dimensionless)

Rem magnetic Reynolds number, u0Drg
(dimensionless)

tw wall thickness (m)

T dimensionless temperature, ð#� h#iÞ=D#
(dimensionless)

u0 velocity scale, ða=DÞðRa=M2Þ ðm s�1Þ
vðu; v;wÞ velocity vector (components) normalized

by u0 (dimensionless)
x; y; z co-ordinates normalized by D

(dimensionless)

Greek symbols

a thermal diffusivity ðm2 s�1Þ
b thermal expansion coefficient ðK�1Þ
dH; dS thickness of the Hartmann and side layers

normalized by D (dimensionless)

D# wall-to-wall temperature drop (K)

g magnetic permeability ðX s m�1Þ
# temperature (K)

u electrical potential normalized by Du0B
(dimensionless)

k thermal conductivity ðW m�1 K�1Þ
l viscosity ðN s m�2Þ
m kinematic viscosity ðm2 s�1Þ
q density ðkg m�3Þ
r electrical conductivity ððX mÞ�1Þ

Subscripts

H Hartmann layer

S side layer

w wall

Fig. 1. (a) Sketch of the three-dimensional cubic enclosure; (b) computational grid.
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evaluated on the basis of physical coherence and com-

parison with the few other three-dimensional studies

presented in the literature.

2. Model and computational methods

With reference to Fig. 1(a), the Rayleigh number can

be defined as

Ra ¼ gbD#D3=ðmaÞ ð1Þ

in which b; m and a are the fluid’s thermal expansion
coefficient, kinematic viscosity, and thermal diffusivity,

respectively. The Hartmann number is defined as

M ¼ DBðr=lÞ1=2 ð2Þ

in which r; q and l ¼ qm are the fluid’s electrical con-
ductivity, density, and viscosity, respectively. It can be

shown that M2 represents the ratio of electromagnetic to

viscous forces.

The walls normal to the magnetic field are called

Hartmann walls. In the associated boundary layers, the

velocity profile is basically determined by a balance be-

tween Lorentz and viscous forces, and their thickness dH
scales asM�1. The walls parallel to the magnetic field are

called side walls, and the associated boundary layers,

side layers; their thickness dS scales as M�1=2 [3].

Under the assumption of a low magnetic Reynolds

number Rem ¼ u0Drg – in which u0 ¼ ða=DÞðRa=M2Þ is a
characteristic velocity and g is the fluid’s magnetic per-
meability – the induced magnetic field is negligible with

respect to the applied field B. Such an inductionless flow

is governed by the Navier–Stokes equations with the

Lorentz force J	 B added to the right-hand side. By

using the Boussinesq approximation for buoyancy, as-

suming steady-state conditions and making all terms

dimensionless (see below), these equations become

Gr
M4

v 
 rð Þv ¼ �rp þ 1

M2
r2vþ j	 ŷyþ T ẑz ð3Þ

and are complemented by the continuity equation

r 
 v ¼ 0: ð4Þ

The velocity vector v ¼ ðu; v;wÞ and the current density j
are scaled, respectively, by u0 and by j0 ¼ ru0B. The
dimensionless pressure p is the difference between the

local and the hydrostatic pressure, scaled by Dj0B. The
dimensionless temperature T is the difference between

the local temperature # and the mean temperature h#i,
divided by the wall-to-wall temperature difference D#.
The current density is given by Ohm’s law

j ¼ �ru þ v	 ŷy ð5Þ

together with the conservation of the electric charge

r 
 j ¼ 0: ð6Þ

The electrical potential u is scaled by Du0B. From Eqs.

(5) and (6) a Poisson equation for u is easily derived

r2u ¼ ðr 	 vÞŷy: ð7Þ

The temperature distribution is governed by the

enthalpy transport equation

Ra v 
 rð ÞT ¼ r2T : ð8Þ

The boundary conditions for velocity are the usual

no-slip conditions at the walls (see below, however, for

the treatment of walls orthogonal to the magnetic field),

while the thermal boundary conditions are

T ¼ 0:5 at x ¼ 0:5: ð9Þ

Of course, the purely conductive solution is simply

T ¼ x.
The electrical boundary condition are simply those

expressing continuity of electrical potential u and elec-

trical current j ¼ �rru at the fluid–wall interface, with
j ¼ 0 on the outer surface of the solid walls. In the

present case of plane walls, by integrating across the wall

thickness tw the above conditions can be reconducted to
the thin wall condition [4] expressing the conservation of

electric charge in the plane of the wall

j 
 n ¼ cwr2
whui ð10Þ

in which hui is the mean value of u across the wall, n is
the inward-directed unit vector normal to the wall, and

r2
w is the two-dimensional Laplacian operator in the

plane of the wall. The constant cw is the wall conductance
ratio, ðrwtwÞ=ðrDÞ.
The governing Eqs. (3), (4), (7) and (8), with the

boundary conditions discussed above, were solved by a

finite volume technique using the SIMPLEC pressure–

velocity coupling algorithm [5] and the QUICK third-

order discretization scheme for the advection terms. The

CFD package CFX-4 [6] was used for the simulations,

but some adaptations were required since CFX-4 does

not explicitly provide for MHD problems [7]. In par-

ticular, the electrical potential equation was solved by

using the elliptic solvers normally adopted by CFX-4 for

the solution of scalar transport equations, appropriately

modified so as not to include convection terms. This

allowed the problem to be treated as a fully implicit fluid

dynamics-scalar transport problem, with no explicit

‘‘outer’’ coupling between hydrodynamic and electrical

quantities.

The explicit resolution of the Hartmann layer can be

omitted by integrating analytically all equations across it

[8,9]. The physical model behind this substitution is that

the wall and the layer are considered as electrical re-

sistances connected in parallel. As a result, the wall

conductance ratio cw at the Hartmann wall must be re-
placed by cw þ dH, where dH ¼ M�1 is the total con-

ductance of the fluid layer. At the same time, at the
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Hartmann walls the first grid point in the fluid must lie

outside of the Hartmann layer, and the no-slip condition

must be replaced either by a shear-free condition or by a

free slip condition (linear extrapolation of the velocity at

the wall from the inner grid points). The two conditions

are similar and yield practically identical flow fields [10];

the second alternative was adopted here.

The model described above could easily be extended

to more complex geometries, including the case of solid

walls arbitrarily oriented with respect to the magnetic

field. However, in this case the local wall conductance

ratio should be written as cw þ ðMn 
 ŷyÞ�1, according to
the local thickness of the Hartmann layer along the wall

surface [11]. As an alternative, a direct simulation of the

Hartmann layers could be performed using a fine near-

wall grid, with no ‘‘synthetic’’ modelling.

In the present computations, 1500 iterations at most

were needed for a complete convergence of all variables;

this convergence speed was thus higher than for the

quasi-two-dimensional, fully developed, problem [2] and

was only slightly affected by the conductivity of the

walls, the Grashof number, or the Hartmann number. A

grid of nx 	 ny 	 nz ¼ 90	 24	 90 ¼ 194400 nodes was

used for all the simulations, with a non-equispaced dis-

tribution in the directions x and z, orthogonal to the

magnetic field; it is shown in Fig. 1(b). The magnetic

field direction was resolved by a comparatively small

number of points since the integral model discussed

above was adopted for the Hartmann layer. Some purely

hydrodynamic simulations were also performed; for

these cases a non-equispaced grid of nx 	 ny 	 nz ¼
60	 60	 60 ¼ 216000 nodes was used. All simulations

were run on a Pentium III-500 MHz computer with 256

MB RAM and typically required �40 h of CPU time for
each test case.

3. Base flow in the absence of MHD interactions

The three-dimensional flow occurring in the differ-

entially heated cubic enclosure in the absence of MHD

effects will be considered first, in order to provide a basis

for the following discussion.

Davis [12] was among the first to discuss three-di-

mensional effects for the free convection flow in a dif-

ferentially heated enclosure. He argued that the

interaction of the main circulation roll with the side

walls should give rise to a secondary flow with a velocity

component parallel to the roll axis. Mallinson et al. [13]

presented three-dimensional finite-difference numerical

simulations for different aspect ratios, Prandtl numbers

ranging from 0.2 to 100 and Rayleigh numbers ranging

from 104 to 105. For an enclosure of aspect ratios 1:2:1

(x:y:z, with the same axis nomenclature as in Fig. 1),

they predicted characteristic toroidal circulation cells

with the flow moving inward, i.e., toward the mid-plane

y ¼ 0, in the centre and outward, i.e., toward the side

walls, at the periphery. A similar three-dimensional flow

pattern was experimentally confirmed by the flow visu-

alization studies of Hiller et al. [14], based on thermo-

chromic liquid crystals suspended in water–glycerol

mixtures filling a cubic enclosure ðPr ¼ 5:8–6000; Ra ¼
104–2	 107Þ.
More recently, three-dimensional numerical simula-

tions were presented by Janssen et al. [15] for Pr ¼ 0:71
(gases) and Ra ranging from 105 to 108. The authors

found only a moderate three-dimensionality, with the

flow in the mid-plane y ¼ 0 very close to that predicted

by two-dimensional simulations. Also the instability

mechanisms leading from steady-state to time-periodic

and chaotic flow, and the corresponding dominating

frequencies, were found to be similar to those predicted

by two-dimensional studies; in particular, transition to

periodic flow was predicted for Ra ¼ 2:3	 106, only
�10% higher than for a two-dimensional enclosure.

As regards low-Prandtl number fluids (liquid metals),

coarse-mesh three-dimensional finite-difference simula-

tions for the free convection of gallium ðPr ¼ 0:027Þ in
rectangular enclosures with different aspect ratios were

presented by Viskanta et al. [16] and were compared

with experimental temperature distributions. The Ray-

leigh number was �106; at this Ra, the flow was found to
be steady and laminar. The authors observed that three-

dimensional effects were significant and, due to the low

value of the Prandtl number, extended down to the mid-

plane of the cavity instead of being confined to the front

and back walls. A correct modelling of the thermal

boundary conditions was found to be crucial.

Tagawa and Ozoe [17] conducted numerical simula-

tions for the free convection flow in differentially heated

enclosures at Pr ¼ 0:025, with and without an external
magnetic field perpendicular to the isothermal walls. The

configuration was the same discussed here, with two

isothermal walls and four adiabatic walls. The authors

used a finite-difference, staggered-grid method, the

HSMAC pressure–velocity coupling algorithm, and the

Utopia third-order differencing scheme for the convec-

tive terms. In the absence of a magnetic field, both at

Ra ¼ 105 and 106 the flow had not attained a steady-

state, but still exhibited significant oscillations, after a

simulation time of �2000	 Ra�2=3D=a. However, the
finest computational grid used was still rather coarse

(463 nodes) and the simulations were rather limited in

time, so that it is difficult to draw precise conclusions

regarding the nature of the oscillations and the influence

of numerical factors. Experimental results by the same

authors [18], conducted in a differentially heated cubic

enclosure filled with liquid gallium at Rayleigh numbers

ranging from 1:85	 106 to 4:75	 106, also exhibited
oscillations in the temperatures measured by thermo-

couples. The oscillations were apparently random, with

no recognizable periodicity.
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As regards the present simulations, conducted for a

Rayleigh number of 105, results are summarized in Figs.

2–4.

Fig. 2 reports in-plane velocity vector plots in the

three co-ordinate planes y ¼ 0 (a), z ¼ 0 (b) and x ¼ 0 (c)

containing the centre of the cubic enclosure. The (di-

mensionless) unit velocity vector is reported above each

graph; note that a different scale is used for the main

circulation in the xz-plane (a) and for the secondary

flows occurring in the xy- and yz-planes (b,c).

Fig. 2. In-plane velocity vector plots in three orthogonal planes passing by the centre of the enclosure for Ra ¼ 105 and no MHD: (a)

plane y ¼ 0; (b) plane z ¼ 0; (c) plane x ¼ 0. The unit (dimensionless) vector is shown close to each plot. Scaling is based on M ¼ 100.

Fig. 3. Secondary flow for Ra ¼ 105, no MHD. Solid line: negative velocity; broken line: positive velocity; thick line: zero. Scaling is

based onM ¼ 100: (a) contours of the v component parallel to y in the plane y ¼ �0:2; (b) contours of the w component parallel to z in
the plane z ¼ 0.
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Secondary flows are also shown in Fig. 3, which re-

ports contours of the v velocity component in the plane

y ¼ �0:2 (a) and of the vertical w component in the mid-
plane z ¼ 0 (b). Graph (a) shows that, in a constant-y

plane located about mid-way between the cavity centre

and one of the side walls, the v velocity component is

directed towards the mid-plane y ¼ 0 in the central re-

gion and away from it (i.e., towards the side wall

y ¼ �0:5) in the periopheral region. This is coherent
with the above discussed findings [12–14] of a toroidal

three-dimensional circulation in the regions adjacent to

the side walls y ¼ 0.5. However, maximum centripetal

v velocities are attained not near the centre of the con-

stant-y cross-sections, but rather at two anti-symmetric

locations which are quite close to the cavity corners and

to the peaks of the opposite, centrifugal flow. Figs. 2(b)

and (c) confirm that secondary flows mainly consist of

complex vortices which do not extend down to the

centre of the enclosure but remain more or less confined

to the corner regions. The characteristic distortion of the

constant-w contours in Fig. 3(b) is a consequence of

these secondary flows and indicates that the intensity of

the main circulation does not decrease monotonically

from the mid-plane y ¼ 0 to the side walls, but rather

exhibits two symmetrical minima at y � 0.25.
The temperature distribution in the mid-plane y ¼ 0

is reported in Fig. 4(a). Like the flow field, also the

isotherm pattern is almost identical to that obtained

from two-dimensional simulations for a corresponding

square enclosure; it exhibits two thick wall boundary

layers and a stably stratified core region, with a weak

inverse horizontal T gradient in the central portion of

the cavity. The distribution of the Nusselt number (di-

mensionless heat flux) along the hot-wall x ¼ 0:5 is re-
ported in Fig. 4(b). Along the vertical direction, Nu

attains its highest values (�5) close to the bottom wall,

in correspondance with the initial development of the

hot-wall boundary layer, and decreases for larger y as

the boundary layer thickens. Along the horizontal di-

rection, contours of Nu exhibit a characteristic distor-

tion, strictly related to the shape of the vertical velocity

contours in Fig. 3(b), which causes absolute maxima of

Nu to be attained not on the mid-line y ¼ 0, but rather at

two off-centre points symmetrically located with respect

to it. All the results shown are in close agreement with

those obtained by Tagawa and Ozoe [17] for the same

Rayleigh number and a very similar Prandtl number.

4. MHD free convection flow

4.1. Review of the literature

A review of buoyant convective magnetohydrody-

namic flows was given by Blums et al. [19]. B€uuhler [20]
developed an asymptotic analysis of fully developed flow

in a vertical rectangular duct. Such flow is governed by

the inertialess equations, and the analysis is valid for

well conducting side walls and high Hartmann numbers.

Both the differentially heated and the internally heated

cases were considered, and the magnetic field was sup-

posed to be parallel to a pair of walls and orthogonal to

the others. The results were used to validate the nu-

merical methods in the CFX-4 code [2].

Only few results have been presented in the literature

for the present configuration, i.e., cubic enclosure with

free convection induced by differential heating. Alek-

sandrova and Molokov [21] presented a purely diffusive

solution.

As mentioned before, Tagawa and Ozoe [17] simu-

lated free convection in a differentially heated cube in the

presence of a magnetic field perpendicular to the iso-

thermal walls (the same configuration studied in the

present work). The problem was characterized by

Fig. 4. Heat transfer for Ra ¼ 105, no MHD. Scaling is based on M ¼ 100: (a) temperature in the plane y ¼ 0; (b) Nusselt number

distribution on the hot (right) wall.
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Pr ¼ 0:025, Ra ¼ 105 and 106, and M ¼ 0–103. All walls

were assumed to be electrically non-conducting. Inter-

estingly, under these conditions a weak magnetic field

(Hartmann number up to 100–200) was found slightly to

enhance heat transfer, causing the average Nusselt

number to increase by 5–7%, and also to enhance the

peak velocity attained near the hot and cold walls. The

moderate increase in heat transfer forM up to�100–200
was also confirmed by the experiments conducted by the

same authors in liquid gallium [18] at Ra ¼ 1:85 	 106 to
4:75	 106. Both effects were explained by the electric
current pattern established near the edges between the

Hartmann walls and the isothermal walls, which com-

bined with the imposed magnetic field so as to assist the

buoyant flow and to contrast the viscous forces exerted

by the walls. Only forM > 200 the decelerating effects of

the Lorentz forces near the central regions of the hot and

cold walls became dominant, and both peak velocities

and heat transfer rates decreased with M.

A more complete numerical analysis was conducted

by Tagawa and Ozoe [22] for Ra ¼ 105; M ¼ 100, and

Pr ¼ 0:025, by letting the wall conductance ratio cw vary
from 0 to 1. The computational grid was rather coarse
(32 nodes in each direction, with only 22 points in the

fluid itself, and five points in each wall). Thus, the side

layers were not properly discretized, and the Hartmann

layer was neither modelled nor directly resolved by a

sufficiently large number of grid points. This is actually

unphysical, especially for the lower values of the wall

conductance ratio, when the currents close themselves

almost completely through the boundary layers rather

than through the solid walls. The results will be consid-

ered later and compared with the present predictions.

As regards experimental results, the work by Tagawa

and Ozoe [18] was mentioned above. Measurements of

the effects of a vertical magnetic field on Rayleigh–

B�eenard convection with the sodium–potassium alloy

NaK (Pr � 1:9	 10�2 at 393 K) were presented by Burr
et al. [23]. The average Nusselt numbers for Ra � 103–105
and a Chandrasekar number BH 2r=l up to �1:4	 104
(H being the height of the enclosure) were compared with

previous numerical simulations, and the possibility of a

time-dependent flow was proved. In a companion report

[24] the effect of a horizontal transverse magnetic field

was studied in the same range of parameters, and a quasi-

two-dimensional model for the core was proposed for

buoyant flow; this model is close to the model presented

by B€uuhler [25], but the buoyancy term was added.

Experimental results for the natural convection in-

duced by differential-heating with liquid NaK and a

Fig. 5. Electric current density j in three orthogonal planes passing by the centre of the enclosure for Ra ¼ 105, M ¼ 100 and perfectly

conducting walls: (a) plane y ¼ 0; (b) plane z ¼ 0; (c) plane x ¼ 0. The unit (dimensionless) j vector is shown above each plot.
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magnetic field orthogonal to the horizontal temperature

gradient and to gravity were presented by Fumizawa [26].

The range of parameters investigatedwasM up to 104 and

Ra � 107–108. The electrical boundary conditions are not

clear, especially at the Hartmann walls, and for this rea-

son a full understanding of the results is difficult. The

configuration was similar to that assumed in the present

work (cubic enclosure), but in the work of Fumizawa the

Rayleigh number was higher and the cavity was slender.

The consequent larger importance of convection perhaps

explains the high Nusselt numbers reported (up to 30).

4.2. The case M ¼ 100, cw ¼ 1 (perfectly conducting

walls)

Results will be presented here for a typical MHD test

case, characterized by a Hartmann number M ¼ 100

and cw ! 1 (perfectly conducting walls). The pattern of

the electric current density vector j is shown in Fig. 5.

Graphs (a)–(c) refer to the principal planes y ¼ 0; z ¼ 0

and x ¼ 0, respectively. The most relevant component of

the current density is that parallel to the magnetic field

B, as shown in the xy (b) and yz (c) cross-sections, where

the j vector is seen to enter orthogonally the Hartmann

walls. The components of j in the plane xz orthogonal to

B (a) are much smaller.

For the same case, the velocity vector plot in the mid-

plane y ¼ 0 is reported in Fig. 6(a). The main flow is

considerably less intense than the base flow with no

MHD, see Fig. 2(a), and exhibits a square-shaped cir-

culation cell in contrast with the circular cell of the base

flow. Secondary flows (not reported) are very weak,

showing that three-dimensionality is almost completely

suppressed by MHD interactions in the cubic enclosure.

Fig. 6. Results for Ra ¼ 105,M ¼ 100 and perfectly conducting walls: (a) in-plane velocity vector plots in the mid-plane y ¼ 0. The unit

(dimensionless) velocity vector is shown; (b) temperature in the mid-plane y ¼ 0; (c) Nusselt number distribution on the hot (right) wall.
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Fig. 7. Velocity profiles along the x axis for Ra ¼ 105, cw ! 1: (a) solutions at various Hartmann number; (b) comparison with the
fully developed channel solution (2) for M ¼ 200.

Fig. 8. Velocity vectors in the plane y ¼ 0 for Ra ¼ 105, cw ! 1. The circulation centres are indicated by small diamonds: (a)
M ¼ 100; (b) M ¼ 200; (c) M ¼ 1000.
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The temperature distribution in the plane y ¼ 0 and

the Nusselt number distribution on the hot active wall

x ¼ 0:5 are reported in Figs. 6(b) and (c) and can be
compared with the results obtained for the case of no

MHD in Fig. 3. Vertical thermal stratification is largely

suppressed by MHD effects, and peak values of the

Nusselt number are reduced from �5 to �3. Also the
characteristic shape of the constant-Nu lines in Fig. 3(b),

associated with the spanwise variation of the vertical

velocity in the base flow, is absent in the MHD case.

4.3. Influence of the Hartmann number

The effect of the Hartmann number M was investi-

gated by repeating the simulations for Ra ¼ 105, per-

fectly conducting walls ðcw ! 1Þ and three values ofM
(100, 200, and 1000).

The velocity profiles obtained along the x axis are

shown in Fig. 7(a). The solutions for M ¼ 100 and 200

are similar in the side boundary layer, while in the core

the positive slope of the profile is recovered forM ¼ 200.

A comparison of velocity profiles in the mid-line for the

fully developed channel flow [2] and the present cubical

enclosure for M ¼ 200, Fig. 7(b), shows that in the side

layers the velocity peak is of the same order (�1.55
against �1.77), while the flow rate carried in the core

region is much higher in the fully developed case.

Fig. 8 shows the velocity vector plots in the plane

y ¼ 0; the thickness of the side layers decreases for

M ¼ 1000, as can be seen also in Fig. 7(a). The shape of

the circulation cells becomes increasingly square for in-

creasing Hartmann numbers, and two circulation cen-

tres (conventionally indicated by small diamonds) are

present. In the case M ¼ 100 the circulation centre on

the right side is located just below mid-height, and that

on the left side just above; circulation centres move to-

wards the corners asM increases, and thus do not affect

the velocity profiles in the mid-line z ¼ 0 for the higher

values of the Hartmann number ðM ¼ 200; 1000Þ. For
M ¼ 1000, Fig. 8(c), two more circulation centres appear

in the top-right and left-bottom corners, and a weak

circular cell is present in the core of the cavity.

An interesting correspondence exists between the

velocity vector plots and the electrical potential distri-

Fig. 9. Electrical potential contours in the plane y ¼ 0 for Ra ¼ 105, cw ! 1: (a) M ¼ 100; (b) M ¼ 200; (c) M ¼ 1000.
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bution in the same plane y ¼ 0, reported in Fig. 9; in

particular, it can be observed that the centres of the

circulation cells tend to coincide with the relative max-

ima of the electrical potential u. This can be explained
by considering that, neglecting the curvature of potential

in the magnetic field direction, the Laplacian of u in the
plane y ¼ 0 gives the component of vorticity in the di-

rection of the magnetic field; this vorticity is responsible

for the circulation shown in Fig. 8. The distribution of

the electrical potential in the plane y ¼ 0 is strongly in-

fluenced by the top and bottom walls, and thus also

inverse velocity profiles in the core of the domain are

possible.

The temperature distribution in the same plane y ¼ 0,

Fig. 10, tends to the purely conductive solution (hori-

zontal stratification only) as the Hartmann number in-

creases; as a result, the average Nusselt number Nu

decreases from 1.403 ðM ¼ 100Þ to 1.045 ðM ¼ 200Þ and
1.007 ðM ¼ 1000Þ. The flow rate carried by the circula-
tion cell, once normalized by u0D, changes little withM,

ranging from �0.135 for M ¼ 100 to �0.150 for

M ¼ 1000.

4.4. Influence of the wall conductance ratio

Fig. 11 reports vector plots of the current density

vector j in the horizontal mid-plane z ¼ 0 for different

values of the wall conductance ratio cw. A perfect

symmetry can be observed in both the x and y direc-

tions. The currents in the plane x ¼ 0 (not reported) are

of the same order of magnitude as in the plane z ¼ 0

and have a similar interpretation, since for this plane

the top and bottom boundary layers play the role of

side layers, while the currents in the plane y ¼ 0 are

much lower. For the lower wall conductance high

current jets flow parallel to the side walls, graphs (a)–

(c). The z-component of such current damps the flow

boundary layer close to the top and bottom walls. The

current patterns obtained for cw ¼ 1 are already prac-

tically identical to those computed for cw ! 1, see
Fig. 5(b).

Fig. 12 reports the velocity vector plots in the mid-

plane y ¼ 0 as cw increases from 0 (insulating walls) to 1.
Note that the base flow obtained for no magnetohy-

drodynamic interactions, normalized by the magnetic

Fig. 10. Temperature contours in the mid-plane y ¼ 0 for Ra ¼ 105, cw ! 1: (a) M ¼ 100; (b) M ¼ 200; (c) M ¼ 1000.
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scale corresponding to M ¼ 100, was reported in

Fig. 2(a), and the solution for cw ! 1 (infinitely con-

ducting walls) in Fig. 6(a). The base flow exhibits a

circulation cell that is basically circular in shape, with

small shear-induced counter-rotating cells in the top-

right and bottom-left corners. The main effects of the

magnetic field are to change the shape of the cell from

circular to square, to modify the thickness of the wall

boundary layers and to suppress the counter rotating

cells at the corners. The currents, and thus the Lorentz

forces are stronger for the higher values of cw, giving rise
to a weaker convective transport. The solution for

cw ¼ 1 is practically coincident with that obtained for

cw ! 1.
The influence of cw is better evidenced from a

quantitative point of view by the line graphs in Fig. 13,

where the vertical velocity w and temperature profiles

along the x-axis are reported. The vertical velocity

Fig. 11. Total current density j in the horizontal mid-plane z ¼ 0 for M ¼ 100, Ra ¼ 105. The unit (dimensionless) j vector is shown

above each plot: (a) cw ¼ 0; (b) cw ¼ 0:01; (c) cw ¼ 0:1; (d) cw ¼ 1.
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profiles are qualitatively different from those obtained

in the fully developed case (2); in particular, convection

is almost suppressed in the core region, and the linear

profile which can be obtained from a simple two-di-

mensional balance of Lorentz and buoyancy forces is

not present for any value of cw. A weak reverse flow

(against buoyancy) is obtained for well conducting

walls (cw ¼ 1 and cw ! 1), resulting in the reverse

slope of the w profiles for jxj < 0:3 in Fig. 13(a). This
behaviour can be explained by the presence of the top

and bottom walls and by the three-dimensionality of

the flow.

Fig. 14 presents the temperature distributions in the

plane y ¼ 0 (mid-plane orthogonal to the magnetic field)

as cw increases from 0 to 1. The base solution with no

MHD interactions and the solution for cw ! 1 were

reported in Figs. 4(a) and 6(b), respectively. For in-

creasing wall conductance ratio, the increasing damping

of convection due to the higher currents is evidenced by

the progressive dominance of horizontal thermal strati-

fication.

Table 1 shows a comparison between the present

predictions for the average Nusselt number, defined as

Nu ¼ ðq00DÞ=ðkD#Þ ¼ oT=oxjw, and the results obtained
by Tagawa and Ozoe [22] for different values of the wall

conductance ratio cw. The best agreement is obtained for
the higher values of cw, when the electrical properties of
the walls actually control the current pattern and thus

Fig. 12. Velocity vectors in the mid-plane y ¼ 0 for M ¼ 100, Ra ¼ 105. The unit (dimensionless) vector is shown above each plot:

(a) cw ¼ 0; (b) cw ¼ 0:01; (c) cw ¼ 0:1; (d) cw ¼ 1.
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the discretization of the boundary layers becomes less

important, while a discrepancy of �20% is observed for

cw ¼ 0 (insulating walls).

Table 2 reports the average friction coefficient (shear

stress made dimensionless by qu20Þ, the flow rate carried
by the main circulation cell, normalized by qu0D2, and

Fig. 14. Temperature in the mid-plane y ¼ 0 for M ¼ 100, Ra ¼ 105: (a) cw ¼ 0; (b) cw ¼ 0:01; (c) cw ¼ 0:1; (d) cw ¼ 1.

Fig. 13. Velocity (a) and temperature (b) profiles along the x axis for M ¼ 100, Ra ¼ 105 and different values of cw.
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the average Nusselt number for the cases simulated. It

can be observed that the dimensionless flow rate in-

creases when cw decreases, ranging from �0.13
ðcw ! 1Þ to �0.58 ðcw ¼ 0Þ, and is highest for the case
in which MHD is absent (flow rate �0.61). The friction
coefficient exhibits the same monotonic behaviour,

ranging from �0.11 ðcw ! 1Þ to �0.31 ðcw ¼ 0Þ, and
being �0.34 without MHD. The Nusselt number attains
a slightly higher value (�3.29) for MHD active and

cw ¼ 0 than for no MHD (�3.27), but the difference is
very small and can probably be reconducted to the dif-

ferent computational grids adopted.

5. Conclusions

Three-dimensional numerical simulations were con-

ducted for the MHD buoyancy-driven flow in a differ-

entially heated cubic enclosure using a suitably modified

version of the CFX-4 software. The proper implemen-

tation of an MHD problem within this code was dis-

cussed, with particular attention to the Lorentz forces,

the potential equation and the treatment of electrical

quantities. The method adopted in the present study is

quite general and allows practical configurations to be

dealt with by using body-fitted co-ordinates, with an

arbitrary electrical conductivity of the walls; pressure-

driven flows can also be simulated and it is possible to

study separate, but electrically coupled, flow regions and

configurations with insulating coatings.

With respect to the previously studied fully devel-

oped flow case, the suppression of the flow field was

found to be stronger in the core, and a complex three-

dimensional flow (with secondary motions) and current

pattern was predicted in the fluid domain. A weak re-

verse flow (against buoyancy) occurred in the core re-

gion, and was associated with the presence of two

centres of circulation in the left- and right-hand sides of

the enclosure. An analogy was observed between stream

function W and electrical potential u in the mid-plane

orthogonal to the magnetic field B, due to the fact that

the component of vorticity in the magnetic field direc-

tion acts as a source term in the electrical potential

equation.

The effects of the Hartmann number M and of the

wall conductance ratio cw were investigated. Increasing
M (e.g., from 100 to 1000) suppressed convective mo-

tions and exalted the square-shape of the circulation

cells. Increasing cw (from perfectly insulating to perfectly
conducting walls) progressively suppressed convective

transport.

The related case of a cubic enclosure with internal

heat generation is the subject of a companion paper

[27].
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